The spatial isomorphism problem for close separable nuclear C*-algebras.

نویسندگان

  • Erik Christensen
  • Allan M Sinclair
  • Roger R Smith
  • Stuart A White
  • Wilhelm Winter
چکیده

The Kadison-Kastler problem asks whether close C*-algebras on a Hilbert space must be spatially isomorphic. We establish this when one of the algebras is separable and nuclear. We also apply our methods to the study of near inclusions of C*-algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification Problem for Nuclear C-algebras

We exhibit a counterexample to Elliott’s classification conjecture for simple, separable, and nuclear C∗-algebras whose construction is elementary, and demonstrate the necessity of extremely fine invariants in distinguishing both approximate unitary equivalence classes of automorphisms of such algebras and isomorphism classes of the algebras themselves. The consequences for the program to class...

متن کامل

Compact Metrizable Structures and Classification Problems

We introduce and study the framework of compact metric structures and their associated notions of isomorphisms such as homeomorphic and bi-Lipschitz isomorphism. This is subsequently applied to model various classification problems in analysis such as isomorphism of C∗-algebras and affine homeomorphism of Choquet simplices, where among other things we provide a simple proof of the completeness ...

متن کامل

On the asymptotic homotopy type of inductive limit <Emphasis Type="Italic">C </Emphasis> <Superscript>* </Superscript>-algebras

Let X, Y be compact, connected, metrisable spaces with base points Xo, Yo and let denote the compact operators. It is shown that Co(X\xo)| is asymptotically homotopic (or shape equivalent) to Co(Y~yo) @ Yi r if and only if X and Y have isomorphic K-groups. Similar results are obtained for certain inductive limits of nuclear C*-algebras. Let ~r denote the category whose objects are all the separ...

متن کامل

The Isomorphism Relation for Separable C*-algebras

We prove that the isomorphism relation for separable C∗-algebras, and also the relations of complete and n-isometry for operator spaces and systems, are Borel reducible to the orbit equivalence relation of a Polish group action on a standard Borel space.

متن کامل

-algebras of Tracial Topological Rank One *

We give a classification theorem for unital separable nuclear simple C∗-algebras with tracial rank no more than one. Let A and B be two unital separable simple nuclear C∗-algebras with TR(A), TR(B) ≤ 1 which satisfy the universal coefficient theorem. We show that A ∼= B if and only if there is an order and unit preserving isomorphism γ = (γ0, γ1, γ2) : (K0(A),K0(A)+, [1A],K1(A), T (A)) ∼= (K0(B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 2  شماره 

صفحات  -

تاریخ انتشار 2010